
Common LabVIEW Conventions

The data-taking and some of the data-analysis programs are written in LabVIEW,

a language which provides a lot of useful user-interface elements without much work on

the part of the programmer. Hence, programs written in this language tend to have a

common look and feel somewhat different from the usual Windows or Mac programs you

might be familiar with. If you’re not familiar with LabVIEW, then you will find it

helpful to read this description of how to use the common GUI elements of the language.

LabVIEW tries, with varying amounts of success, to make programs shown on a

screen look and feel like physical instruments covered with knobs, switches, dials, etc.

Since there are no physical objects present, you have to use the mouse to indicate what

you want to do. Thus, to turn a knob, you click and drag on a point on its perimeter. The

analogy is used to such an extent that all LabVIEW documentation refers to the user

interface of a program as its ‘front panel’. Programs also have ‘block diagrams’ which

constitute their source code.

One of the fundamental concepts is that of controls and indicators. A control is a

way you tell the program what you want it to do or the value of a quantity. An indicator

is a way the program tells you something. Thus, a knob is usually a control. However,

all controls can be loaded with values and used as indicators, and all indicators can be set

up to be used as controls. Confusing? Yes, but it usually works out in an intuitive way.

For instance, graphs are indicators, but they can have cursors on them, which can be used

as controls. Another example is LEDs. These are used for Boolean (on/off) indicators,

showing bright when TRUE/ON and dark when FALSE/OFF. However, they’re often

used as pushbuttons for selecting things. For instance, the Plot Specification controls

include arrays of LEDs. These LEDs are initially set to register as specified in a file, but

the user gets to manipulate these and change their states. Similarly, other sorts of

controls are often pre-loaded with default information so you don’t always have to set

them.

While on the subject of Booleans, I’ll mention a convention with regard to

switches. These are controls or indicators which look like toggle or slide switches or

fancy 3D switches with lights. You work these by clicking on them; you don’t click and

drag as you do with knobs. The convention is that ON is represented by a switch that is

up or to the right, just as on physical devices. Sometimes these switches will have labels

ending in a ?, like “Delete all data at end of run?”. In these cases, up or right means yes.

It can be hard to tell if a button is ‘pushed’, i.e. on. The convention is that the

‘light’ comes from the upper left, so a button which is not pushed, hence ‘raised’, will

have a bright arc from about 7:30 to 1:30 along its circumference and a dark arc the rest

of the way around, while these colors will be reversed if the button has been ‘pressed’.

Many buttons ‘pop out’ as soon as they have been pressed and that action sensed by the

program. If such a button remains ‘pushed’, then there may be something wrong.

Some controls have a little box off to the side with an integer showing, usually 0.

These controls are array controls which specify or indicate lists of quantities. The LEDs

in the Plot Specification controls are array controls. There may be more LEDs showing

than there are elements defined in that array. In that case, the excess lights are ‘grayed

out’ (see below). The index display has a little spinner by which you can scroll up or

down the list, and you can also type in a number. Thus, if there are 15 elements in an

array indicator and you want to see the 25’th, you can type 15 into the index display and

then the desired element will show up as #10.

That brings to mind a convention which will be natural and familiar to computer

types, especially C programmers, and confusing to others. That is, all lists start at the 0th

element. Thus, the first scaler is scaler 0. The first element to appear in any array

display is likewise #0. Some of the beamline hardware works the same way. Likewise,

the first cursor on a graph is called Cursor 0 by default.

One control which doesn’t have a physical analog is the File Path control. This

looks like a small rectangular typing area, often with a folder icon next to it. That folder

icon is a Browse button which lets you search for files of a given sort. The dialog box

it’s used with follows the same conventions as any standard Windows file box. You can

also type directly into the white (usually) typing area.

Another non-physical control is the String control. This is a place where you can

type something. For instance, in the EXAFS data-taker, energies may be specified not

only as numbers like 8978 but by alphanumeric combinations such as ‘cuk+50’, which

means 50eV above the Cu-K edge. String indicators are often used to report back to the

user such information as what the current file is and any error conditions encountered.

All buttons, switches and knobs in LabVIEW can be made to do something

physical knobs can’t do: they can go gray and become locked out. This means exactly

what ‘grayed out’ means in Windows. For instance, if you’re in one of the editing

routines and what you’ve specified isn’t possible, the Accept button which would

otherwise solidify your choice becomes grayed out. This is a clue that something’s

wrong and needs to be fixed before proceeding. Similarly, in the EXAFS data-taking

program, you can’t move the monochromator while scanning, so the Move Mono buttons

are grayed out. This mechanism is a reasonably elegant and gentle way of prohibiting

attempted actions which don’t make sense or would be harmful. It beats being yelled at

or having dialog boxes pop up and have to be clicked on. If the gray-out is due to an

error condition, a message will appear in a box on screen to tell you what’s wrong.

All LabVIEW programs have an arrow on a pushbutton near the upper left, just

under the title bar. This is how you tell it to run. If it’s a white arrow, it means that

LabVIEW is waiting to run the program. At this stage, you can do things to controls but

nothing will happen. Browse boxes work, so you can preview where files are before

starting out. At this stage, though, the program is vulnerable to tinkering unless it’s been

protected by a password or its file has been write protected. It’s possible to change any

color, size, shape or format of any display item. When you click on the white arrow, it

turns black. That’s the sign that the program is running. It’s possible to stop a program

using the stop-sign icon to the right of the arrow, but there’s usually a more graceful way

of stopping in the form of a Stop or Exit button in the program. The stop sign is like ^C

or control-Break in DOS; it’s a hard stop with no provision for cleanup. Use only if

hung.

Some buttons cause a new front panel to pop up. When this happens, you are in a

sub-program with its own controls and copy of the data. There will be one or more

buttons marked ‘Accept’, ‘Cancel’ or ‘Return’ which let you back into the main program.

This type of interface is used when the front panel of the sub-program is too complex or

large to fit easily within the main screen. Think of such sub-programs as being like

Windows Wizards or the sort of menu item whose name ends in an ellipsis, such as

“Options...”.

Tab controls constitute a new feature in LabVIEW 6, which has been used

extensively in our code. A tab control looks like a set of tabbed folders, or like the tabs

in Excel or certain Windows controls (for example, Tools->Options in Word and others).

Each page of a tab control can have other controls or displays on it. Thus, functions can

be segregated, resulting in a cleaner front panel.

One of the most complex types of indicators in LabVIEW is the graph. There are

several types of graph, but they have common features. The next page shows a typical

graph and callouts explaining the features. Since tools for scaling, cursors, zooming, axis

labeling and formatting, etc. come with LabVIEW graphs, we have come to rely on them

instead of coding such tools into the programs. Thus, if you want to zoom on a specific

area of a graph, you can do it, but you have to do it using LabVIEW’s tools. Similarly, if

part of a curve falls off a graph and you want to retrieve it, you need to know which

button to push to do it. Thus, the next page shows a typical graph and its various parts.

Not all graphs will have all these parts, and some will have more than one curve on them.

Also, the background on the controls of this graph is lighter than usual in order to make

the controls more obvious. This alteration is an example of what can be done to the front

panel when the program is loaded but not running.

1x

1y
4 5
6

2x 3x
2y 3y

8 9x 9y10
11

12

13

7 14

1x,y: Names of X,Y axes

2x,y: Scale-to-fit buttons for X,Y axes. Push this to make the whole curve fit in the
graph.

3x,y: Scale format. Use these to adjust how the scale numbers are displayed. These

pop up sub-menus which let you specify how many decimals to display and
whether to use scientific notation.

4,5,6: Zoom, cursor and pan tools. When the zoom button is in, as in this example, the

mouse lets you zoom in the image. The type of zoom (window, zoom in/out,
zoom X only, zoom Y only, undo last zoom) may be changed by clicking on the
button. Clicking on the pan (hand) tool changes the mouse pointer to a hand,
which lets you move the graph around in its frame. The + is the cursor button,
which lets you grab the cursor.

7. One of two cursors on this graph. These are used to select regions of interest.
When a cursor is showing, you can grab it with the mouse pointer provided the
+ button (6) is ‘pushed’. It doesn’t matter which cursor you use; the program will
sort out which is left and which is right.

8. Cursor name. Since it doesn’t matter which is which, Labview’s default names
 are retained.

9x,y: Coordinates of the cursor.

10: The black square shows that the top cursor is ready to be manipulated. You can
 switch to the other one by clicking on it or its square.

11. Cursor appearance control. Clicking on this brings menus allowing you to change
 the color and style of the cursor.

12. Cursor lock indicator. If this shows ‘locked’, the cursor is constrained to follow
 the graph on the screen. This feature is automatically engaged in one of the
 background-subtraction pop-ups in the data editor.

13. Cursor movement buttons. These arrows let you move the cursor by 1-pixel

increments.

14. Plot legend. When more than one curve is plotted, shows which graph is which.
 For this particular graph, there is only one curve, so no effort was made to change

the name from the default. Right-clicking on this brings up a menu which allows
you to change the style and color of the plot, e.g. making it plot as green dots
instead of a white line.

